Connect with us

Machine Learning

What is Training and Testing Data in Machine Learning with Types?

Published

on

Machine learning (ML) is a one of the fastest growing technology interchangeably used with artificial intelligence (ML) on which many companies across the world are working with more innovative models and applications developed with encouraging results.

To develop such models on machine learning principles a training data is used that can help machines to read or recognize a certain kind of data available in various formats like texts, numbers and images or videos to predict as per the learned patterns.

Difference Between Training and Testing Data in ML

Training Data is kind of labeled data set or you can say annotated images used to train the artificial intelligence models or machine learning algorithms to make it learn from such data sets and increase the accuracy while predating the results.

Also Read: How Much Training Data is Required for Machine Learning Algorithms?

While on the other hand, after using the training data sets each machine learning model needs to be tested to check the accuracy and validate the model prediction. Testing data is quite different from training data, as it is a kind of sample of data used for an unbiased evaluation of a final model fit on the training dataset to check model functioning.

Why Training Data is Important?

Training data is important because without such data a machine cannot learn anything and if you want to train model you have to feed the curated data sets allowing machines learn from the repetitive or differentiated patterns and predict accordingly.

Also Read: Reasons Why AI and ML Projects Fail Due to Training Data Issues

As much as quality training data is feed into the AI model or ML algorithms with the right algorithm you will get the more accurate results. The accuracy of model prediction mainly depends on the quality and quantity of training data sets used to train such models.

What are the Different Types of Training Data?

Apart from annotated text and video, there are different types of image training data sets available in the market depending on the field of industry of model development. And image annotation technique as training data is used for self-driving or autonomous vehicles, drones, satellite imagery, AI in agriculture, security surveillance and sports analytics.

Also Read: What are the various Types of Data Sets used in Machine Learning?

Image Annotations Types for Training Data in Machine Learning:

These annotation types are used for computer vision to recognize the objects of interest in the images and store the information into their system for future prediction. And the main purpose of image annotations is to train the machines and develop a fully-functional AI model that can detect the various types of objects and take the action accordingly. And acquiring the right quality of annotated images as training data become an important factor for machine learning engineers or companies working on AI.

How to Get Training Data for Machine Learning?

Collecting the right quality and amount of data sets from a reliable source is a challenging task in the AI world. As most of the data sets used to train machine learning models are in the form of annotated images that a computer vision can easily recognize and learn for predictions.

To get the right quality and quantity of training data sets you need to get in touch with a professional company like Cogito that provides the machine learning training data with image annotations and data labeling service. You can get all types of annotated images as per your AI model or machine learning algorithm training needs and affordability.

Advertisement
Click to comment

Leave a Reply

Your email address will not be published. Required fields are marked *

Artificial Intelligence

Artificial Intelligence in High-Quality Embryo Selection for IVF

Published

on

artificial intelligence embryo selection IVF

IVF treatment is becoming a common practice in today’s reality, where 12% of the world population struggle to conceive naturally. But thanks to artificial intelligence in IVF, the whole process is going to help the embryologists to select the best quality embryos for in-vitro fertilization improving the success of conception through artificial insemination.

As per the latest study published in eLife, a deep learning system was able to choose the most high-quality embryos for IVF with 90% accuracy. Compared to trained embryologists, the deep learning model performed with an accuracy of approximately 75% while the embryologists performed with an average accuracy of 67%.

As per the research stated, the average success rate of IVF is 30 percent. The treatment is also expensive, costing patients over $10,000 for each IVF cycle with many patients requiring multiple cycles in order to achieve successful pregnancy.

Risk Factors in IVF Treatment

While multiple factors determine the success of IVF cycles, the challenge of non-invasive selection of the highest available quality embryos from a patient remains one of the most important factors in achieving successful IVF outcomes.

artificial intelligence in ivf

Currently, tools available to embryologists are limited and expensive, leaving most embryologists to rely on their observational skills and expertise. As selection of quality embryo increases the pregnancy rates, that is now possible with AI.

Also Read: How Artificial Intelligence Can Predict Health Risk of Pregnancy

Researchers from Brigham and Women’s Hospital and Massachusetts General Hospital (MGH) set out to develop an assistive tool that can evaluate images captured using microscopes traditionally available at fertility centers.

artificial intelligence embryo selection

There is so much at stake for our patients with each IVF cycle. Embryologists make dozens of critical decisions that impact the success of a patient cycle. With assistance from our AI system, embryologists will be able to select the embryo that will result in a successful pregnancy better than ever before,” said co-lead author Charles Bormann, PhD, MGH IVF Laboratory director.

AI in Embryo Selection through Machine Learning

The team trained the deep learning system (sub branch of machine learning) using images of embryos captured at 113 hours post-insemination. Among 742 embryos, the AI system was 90% accurate in choosing the most high-quality embryos.

ivf machine learning
AIVF’s deep learning and computer vision algorithms applied to time-lapse videos and stills of embryo development with proprietary markers and identifiers. Image Credit

The investigators further assessed the system’s ability to distinguish among high-quality embryos with the normal number of human chromosomes and compared the system’s performance to that of trained embryologists help in healthy baby growth in the womb.

Also Read:  What Causes A Baby To Stop Growing In The Womb During Pregnancy

The results showed that the system was able to differentiate and identify embryos with the highest potential for success significantly better than 15 experienced embryologists from five different fertility centers across the US.

However, the deep learning system is meant to act only as an assistive tool for embryologists to make judgments during embryo selection but going to benefit clinical embryologists and patients. Actually, a major challenge in the field is deciding on the embryos that need to be transferred during IVF and such AI models can make right decisions. 

Machine Learning Training Data for AI Model

The research stated that deep learning model has potential to outperform human clinicians, if algorithms are trained with more qualitative healthcare training datasets. Advances in AI have promoted numerous applications that have the potential to improve standard-of-care in the different fields of medicine.

Though, few other groups use to evaluate different use cases for machine learning in assisted reproductive medicine, this approach is novel in how it used a deep learning system trained on a large dataset to make predictions based on static images.

Such findings could help the couples become parents through IVF with higher chances of conceptions with right embryos selections. And further with more improvement in training development of AI systems will be used in aiding embryologists to select the embryo with the highest implantation potential, especially amongst high-quality embryos.

Watch Video:  Future of AI in Embryo Selection for IVF

Source: Health Analytics

Continue Reading

Artificial Intelligence

How Artificial Intelligence Can Predict Health Risk of Pregnancy?

Published

on

artificial intelligence pregnancy risk

Artificial Intelligence (AI) in healthcare is going to improve the birth process of humans with better diagnosis method when baby is in mother’s womb. Yes, using the machine learning approach, now AI can help predict the pregnancy related risks.  

As per the published in the American Journal of Pathology, a machine learning model can analyze placenta slides and inform more women of their health risks in future pregnancies, leading to lower healthcare costs and better outcomes.

Placenta Complications During Pregnancy

Actually, when a baby is born, doctors sometimes examine the placenta for features that might suggest health risks in any future pregnancies. Providers analyze placentas to look for a type of blood vessel lesion called decidual vasculopathy (DV).

Placenta Complications During Pregnancy

These indicate that the mother is at risk for preeclampsia, a complication that can be fatal to both the mother and baby in any future pregnancies. Once detected, preeclampsia can be treated, so there is considerable benefit from identifying at-risk mothers before symptoms appear.

Also Read: What Causes A Baby To Stop Growing In The Womb During Pregnancy

However, although there are hundreds of blood vessels in a single slide, only one diseased vessel is needed to indicate risk. This makes examining the placenta a time-consuming process that must be performed by a specialist, so most placentas go unexamined after birth.

How Machine Learning Predict Pregnancy Risks?

Researchers said, pathologists train for years to be able to find disease in these images, but there are so many pregnancies going through the hospital system that they don’t have time to inspect every placenta with full attention and accuracy.

While on the other hand researchers trained a machine learning algorithm to recognize certain features in images of a thin slice of a placenta sample. The team showed the tool various images and indicated whether the placenta was diseased or healthy.

Because it’s difficult for a computer to look at a large picture and classify it, the team employed a novel approach through which the computer follows a series of steps to make the task more manageable.

First, the computer detects all blood vessels in an image. Each blood vessel can then be considered individually, creating similar data packets for analysis.

machine learning predict pregnancy
Image and blood vessel patches from data set: Image Source

Then, the computer can access each blood vessel and determine if it should be deemed diseased or healthy. At this phase, the algorithm also considers features of the pregnancy, such as gestational age, birth weight, and any conditions the mother might have. If there are any diseased blood vessels, then the picture is marked as diseased.

The tool achieved individual blood vessel classification rates of 94% sensitivity and 96% specificity, and an area under the curve of 0.99. While algorithm helps pathologists know which images they should focus on by scanning an image, locating blood vessels, and finding patterns of the blood vessels that identify.

The team noted that the algorithm is meant to act as a companion tool for physicians, helping them quickly and accurately assess placenta slides for enhanced patient care.

AI Assisted Pregnancy Risk Detection 

Though, this algorithm isn’t going to replace a pathologist anytime soon. The goal here is that this type of algorithm might be able to help speed up the process by flagging regions of the image where the pathologist should take a closer look.

artificial intelligence pregnancy risk

Such studies demonstrate the importance of partnerships within the healthcare sector between engineering and medicine as each brings expertise to the table that, when combined, creates novel findings that can help so many individuals.

Also Read: Artificial Intelligence in High-Quality Embryo Selection for IVF

Such useful findings have significant implications for the use of artificial intelligence in healthcare. As healthcare increasingly embraces the role of AI, it is important that doctors partner early on with computer scientists and engineers so that we can design and develop the right tools for the job to positively impact patient outcomes.

And with the high-quality healthcare training data for machine learning can further help to improve the risks level associated with pregnancies. AI companies are using the right training datasets to train such model to learn precisely and predict accurately.     

Also Read: Why Global Fertility Rates are Dropping; Population Will Fall by 2100

Source: Health Analytics

Continue Reading

Artificial Intelligence

Top 5 Applications of Image Annotation in Machine Learning & AI

Published

on

applications of image annotation

At the time of developing the AI models through machine learning (ML) first and most important thing you need, relevant training data sets, which can only help the algorithms understand the scenario through new data or seeing the objects and predict when used in real-life making various tasks autonomous.

In the visual perception based AI model, you need images, containing the objects that we see in our real life. And to make the object of interest recognizable to such models the images need to be annotated with the right techniques. And image annotation is the process, used to create such annotated images. The applications of image annotation in machine learning and AI is substantial in terms of model success.

What is Image Annotation?

So, right here we will discuss the applications of the image annotation, but before we proceed, we need to review the definition of image annotation and its use in the AI industry. Image annotation is the process of making the object of interest detectable and recognizable to machines.

And to make such objects recognizable in the images, they are annotated with added metadata for the description of the object. And when a huge amount of similar data is feed into the model, it becomes trained enough to recognize the objects when new data is presented in real-life situations.

5 APPLICATIONS OF IMAGE ANNOTATION

Annotated images are mainly used to make the machine learn how to detect the different types of objects. But as per the AI model functions, ML algorithms compatibility and use in the various industries, image annotation applications also differ that all about we will discuss here below with the annotation types.

Detection of Object of Interest

The most important application of image annotation is detecting the objects in the images. In an image, there are multiple things, or you can say objects, but every object would be not required to get noticed by the machines. But the object of interest need to be get detected, and the image annotation technique is applied to annotate and make such objects detectable through computer vision technology.

Also Read: What Is Computer Vision In Machine Learning And AI: How It Works

Recognition of Types of Objects

After detecting the object, it is also important to recognize what types of objects it is, humans, animals or non-living objects like vehicles, street poles and other man-made objects visible in the natural environment. Here again image annotation helps to recognize the objects in the images.

Though, object detection and recognition runs simultaneously, and while annotating the objects in various cases, the notes or metadata is added to describe the attributes and nature of the object, so that machine can easily recognize such things and store the information for the future references.

Classification of Different Objects

It is not necessary all objects in an image belong to the same category, if a dog is visible with man, it needs to be classified or categorized to differentiate both of them. Classification of the objects in the images is another important application of image annotation used in machine learning training.

Also Read: The Main Purpose Of Image Annotations Is To Develop AI Model

Along with image classification, the localization of objects is also done through image annotation practice. In image annotation, there are multiple techniques, used to annotate the objects and classified into the different categories helping the visual perception based AI model detect and categorize the objects. 

Segmentation of Object in the Single Class

Just like object classification, objects in the single class need to be segmented to make it more clear about the object, its category, position and its attributes. Semantic segmentation image annotation is used to annotate the objects with each pixel in the image belongs to a single class.

The main applications of image annotation are to make the AI model or machine learning algorithm learn with more accuracy about objects in the images. For semantic segmentation, image annotation is basically applied for deep learning-based AI models to give precise results in various scenarios.

Recognizing the Humans Faces & Poses

AI cameras in smartphones or security surveillance are now able to recognize the face of humans. And do you how it became possible in AI world? Thanks to image annotation, that makes the humans face recognizable through computer vision with the ability to identify the person from the database and discriminate them among the huge crowd from the security surveillance system perspective.

In image annotation for face recognition algorithms, the faces of humans are annotated from one point to another point measuring the dimension of the face and its various points like chin, ears eyes, nose and mouth. And these facial landmarks are annotated and provided to the image classification system. Hence, image annotation is playing another important role in recognizing the people from their faces.

TYPES OF IMAGE ANNOTATION    

I hope you got to know the applications of image annotation in the world of AI and machine learning. Now you should know what are the types of image annotations used to create the machine learning training datasets for deep learning-based AI models? And we will also discuss here the application of different types of image annotation into various industries, fields and sectors with uses cases of AI-based models.   

Bounding Box Annotation to Easily Detect the Objects

Bounding box annotation is one of the most popular techniques used to detect the objects in the images. The object of interest are annotated either in a rectangular or square shape to make the object recognizable to machines through computer vision. All types of AI models like self-driving cars, robots, autonomous flying objects and AI security cameras relying on data created by bounding box annotation.   

Semantic Segmentation to Localize Objects in Single Class 

To recognize, classify and segment the objects in the single class, semantic image segmentation is used to annotate the objects for more accurate detection by machines. It is actually, the process of diving the images into multiple segments of an object having the different semantic definitions. Autonomous vehicles and drones, need such training data to improve the performance of the AI model.    

3D Point Cloud Annotation to Detect the Minor Objects

The image annotation applications not only include object detection or recognition, but even can also measure or estimate the types and dimensions of the object. 3D point cloud annotation is the technique that helps to make such objects detectable to machines through computer vision. Self-driving cars are the use case, where training data sets are created through 3D point cloud annotation. This image annotation helps to detect the object with additional attributes including lane and sideways path detection.

Landmark Annotation to Detect Human Faces & Gestures

Landmark annotation is another type of image annotation technique used to detect human faces. AI models like AI cameras in security surveillance, smartphones and other devices can detect the human faces and recognize the gestures and various human possess. Landmarking is also used in sports analytics to analyze the human possess performed while playing outdoor games. Cogito provides the landmark point annotation with the next-level of accuracy for precise detection of human faces or their poses.  

3D Cuboid Annotation to Detect the Object with Dimension

Detecting the dimensions of the object is also important for AI models to get a more accurate measurement of various objects. The 2D images are annotated with capturing all the dimensions visible in the image to build a ground truth dataset for 3D perception on the objects of interest. Again autonomous vehicles, AI robots and visual perception models used to detect the indoor objects like carton boxes with the dimension need such annotated images, created through 3D cuboid annotation.  

Polygon Annotation to Detect Asymmetrical Shaped Objects 

Similarly, polygon annotation is used to annotate the objects that are in irregular shapes. Coarse or asymmetrical objects can be made recognizable through the polygon image annotation technique. Mainly road marking or other objects are annotated for the self-driving cars. And autonomous flying objects like drones, viewing the objects from Ariel view can detect or recognize such things when trained with training data sets created through polygon annotation for precise object detection.

Polyline/Splines/Line Annotation for Lane or Path Detection

Lines, Polylines and Splines are all similar types of image annotations used to create the training data sets allowing computer vision systems to consider the divisions between important regions of an image. The boundaries, annotating lines or splines are useful to detect lanes for self-driving cars. Road surface marking that are indicating the instructions of driving on the road need to also make understandable to autonomous cars. Polyline annotation that divides one region from another region.

The right applications of image annotation are possible when you use the right tools and techniques to create high-quality training data sets for machine learning. And Cogito is the industry leader in human-powered image annotation services with the best level of accuracy for different AI models or use cases. Working with a team of well-trained and experienced annotators, it can produce the machine learning training data sets for healthcare, agriculture, retail, automotive, drones and robotics.

This article was originally written for cogitotech.com

Continue Reading
Advertisement

Latest Posts

Pariwar-Web-Series-Hotstar Pariwar-Web-Series-Hotstar
Entertainment4 days ago

New Movies & Web Series Releases on OTT Platforms This Week

Prolong lockdowns likely to restrict the operations of theaters and cinema halls for the next years. But the entertainment &...

what is cut off price in ipo what is cut off price in ipo
Stock Market4 days ago

What is Cutoff Price in IPO Application: Why Bid at Cutoff Price?

Many times investing in primary stock market gives lucrative returns in short time period compare to secondary market. Yes, bidding...

artificial intelligence embryo selection IVF artificial intelligence embryo selection IVF
Artificial Intelligence6 days ago

Artificial Intelligence in High-Quality Embryo Selection for IVF

IVF treatment is becoming a common practice in today’s reality, where 12% of the world population struggle to conceive naturally....

Upcoming Movies & Web Series on OTT Platforms Upcoming Movies & Web Series on OTT Platforms
Entertainment1 week ago

Upcoming Movies & Web Series To Be Released on OTT Platforms

I know you are waiting for the upcoming movies or web series to be released next week on OTT platforms,...

Role of Vitamin C in Fighting with COVID-19 Role of Vitamin C in Fighting with COVID-19
Health2 weeks ago

How Vitamin C Helps in Fighting with COVID-19 & Other Viruses?

Millions of people died and suffering from Coronavirus (COVID-19) and many are at risk of getting infected with such deadly...

artificial intelligence pregnancy risk artificial intelligence pregnancy risk
Artificial Intelligence2 weeks ago

How Artificial Intelligence Can Predict Health Risk of Pregnancy?

Artificial Intelligence (AI) in healthcare is going to improve the birth process of humans with better diagnosis method when baby...

India china border fight video India china border fight video
Videos2 weeks ago

India China Border Fight Video of 15 June Goes Viral First Time

A video showing the deadly clash between Chinese and Indian troops on 15 June with fists and sticks, apparently in...

Medical Image Annotation Medical Image Annotation
Artificial Intelligence3 weeks ago

What is Medical Image Annotation: Role in AI Medical Diagnostics

AI in healthcare is becoming more prevalent with more effective computer vision-based machine learning model developments. The more training data...

benefits of drinking lemon water benefits of drinking lemon water
Health4 weeks ago

Benefits of Drinking Lemon Water to Boost Immunity with Vitamin C

Lemon water not only makes a delicious drink to keep your stomach cool in summers but also gives immunity to...

How Much Vitamin C is Too Much How Much Vitamin C is Too Much
Health4 weeks ago

How Much Vitamin C is Too Much: Side Effects of Excess Vitamin C

We all know, Vitamins are the most essential nutrients for our body. Vitamins are broadly classified as water-soluble and fat-soluble...

Advertisement
Advertisement
Advertisement
Advertisement
Advertisement

Trending

en English
X